查看“︁國中數學/國中數學七年級/2-5 指數律”︁的源代码
←
國中數學/國中數學七年級/2-5 指數律
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{header2 |previous=[[國中數學/國中數學七年級/2-4 分數的乘除|2-4 分數的乘除]] |next=[[國中數學/國中數學七年級/3-1 一元一次式|3-1 一元一次式]] |title=[[國中數學/國中數學七年級|國中數學七年級]] |section=2-5 指數律 }} 在舊課綱中,該單元合併在[[國中數學/國中數學七年級/1-4 指數記法與科學記號|1-4 指數記法與科學記號]]。但在108新課綱後,該單元改為併入[[國中數學/國中數學七年級/2-3 分數的加減|2-3 分數的加減]]及[[國中數學/國中數學七年級/2-4 分數的乘除|2-4 分數的乘除]]。但因其重要性,因此將本單元獨立成一個單元。 ==指數律== <big><big><math>a,b,m,n,x</math>是不為<math>0</math>的實數(<math>a,b,m,n,x \in \mathbb{R} \neq 0</math>),且a,b不可同時為負數</big></big> ===a<sup>m</sup> × a<sup>n</sup> = a<sup>m+n</sup>=== <math> \begin{align} & a^m \times a^n \\ = & (\underbrace{a \times a \times a \times \cdots \times a}_{m \text{個} \ a}) \times (\underbrace{a \times a \times \cdots \times a}_{n \text{個} \ a}) \\ = & \underbrace{a \times a \times a \times \cdots \times a}_{m \text{個} \ a} \times \underbrace{a \times a \times \cdots \times a}_{n \text{個} \ a} \\ = & \underbrace{a \times a \times a \times \cdots \times a}_{m+n \text{個} \ a} \\ = & a^{m+n} \end{align} </math> ===a<sup>m</sup> ÷ a<sup>n</sup> = a<sup>m-n</sup>=== <math> \begin{align} & \text{(1)}\\ & \text{if} \quad m > n : \\ & a^m \div a^n \\ = & \frac{\overbrace{a \times a \times a \times \cdots \times a}^{m \text{個} \ a}}{\underbrace{a \times a \times \cdots \times a}_{n \text{個} \ a}} \\ = & \frac{\overbrace{\not{a} \times \not{a} \times \not{a} \times \not{\cdots} \times a \times a \times \cdots \times a}^{m \text{個} \ a}}{\underbrace{\not{a} \times \not{a} \times \not{\cdots} \times \not{a}}_{n \text{個} \ a}} \\ = & \underbrace{a \times a \times a \cdots a}_{m-n \text{個} \ a} \\ = & a^{m-n}\\ & \\ & \text{(2)}\\ & \text{if} \quad m < n : \\ & a^m \div a^n \\ = & \frac{\overbrace{a \times a \times \cdots \times a}^{m \text{個} \ a}}{\underbrace{a \times a \times a \times \cdots \times a}_{n \text{個} \ a}} \\ = & \frac{\overbrace{\not{a} \times \not{a} \times \not{\cdots} \times \not{a}}^{m \text{個} \ a}}{\underbrace{\not{a} \times \not{a} \times \not{a} \times \not{\cdots} \times a \times a \times \cdots \times a}_{n \text{個} \ a}} \\ = & \frac{1}{\underbrace{a \times a \times a \cdots a}_{n-m \text{個} \ a}} \\ = & \frac{1}{a^{n-m}} \end{align} </math> ===a<sup>0</sup> = 1=== <math> \begin{align} & \text{if} \quad m = n : \\ & a^m \div a^n \\ = & a^{m-n} = a^0 \\ = & \frac{\overbrace{a \times a \times a \times \cdots \times a}^{m \text{個} \ a}}{\underbrace{a \times a \times a \times \cdots \times a}_{n \text{個} \ a}} \\ = & \frac{\overbrace{\not{a} \times \not{a} \times \not{\cdots} \times \not{a}}^{m \text{個} \ a}}{\underbrace{\not{a} \times \not{a} \times \not{\cdots} \times \not{a}}_{n \text{個} \ a}} \\ = & 1 \\ \Rightarrow & a^0=1 \end{align} </math> ===(a<sup>m</sup>)<sup>n</sup> = a<sup>m×n</sup>=== <math> \begin{align} & (a^m)^n \\ = & (\underbrace{a^m \times a^m \times a^m \times \cdots \times a^m}_{n \text{個} \ a^m}) \\ = & \underbrace{{\overbrace{(a \times \cdots \times a)}^m} \times {\overbrace{(a \times \cdots \times a)}^m} \times \cdots \times {\overbrace{(a \times \cdots \times a)}^m}}_{m \times n \text{個} \ a} \\ = & \underbrace{a \times a \times a \times \cdots \times a}_{m \times n \text{個} \ a} \\ = & a^{m \times n} \end{align} </math> ===a<sup>m</sup> × b<sup>m</sup> = (a × b)<sup>m</sup>=== <math> \begin{align} & {a^m} \times {b^m} \\ = & (\underbrace{a \times a \times \cdots \times a}_{m \text{個} \ a}) \times (\underbrace{b \times b \times \cdots \times b}_{m \text{個} \ b}) \\ = & {\underbrace{a \times a \times \cdots \times a}_{m \text{個} \ a}} \times {\underbrace{b \times b \times \cdots \times b}_{m \text{個} \ b}} \\ = & {\underbrace{a \times b \times a \times b \times a \times b \times a \times b \times \cdots \times a \times b}_{m \text{個} \ a \text{和} \ b \text{相 乘}}} \\ = & {\underbrace{(a \times b) \times (a \times b) \times (a \times b) \times (a \times b) \times \cdots \times (a \times b)}_{m \text{個} \ a \times \ b }} \\ = & (a \times b)^m \end{align} </math> ===a<sup>m</sup> ÷ b<sup>m</sup> = (a ÷ b)<sup>m</sup>=== <math> \begin{align} & {a^m} \div {b^m} \\ = & (\underbrace{a \times a \times \cdots \times a}_{m \text{個} \ a}) \div (\underbrace{b \times b \times \cdots \times b}_{m \text{個} \ b}) \\ = & {\underbrace{a \times a \times \cdots \times a}_{m \text{個} \ a}} \div {\underbrace{b \div b \div \cdots \div b}_{m \text{個} \ b}} \\ = & {\underbrace{a \div b \times a \div b \times a \div b \times a \div b \times \cdots \times a \div b}_{m \text{個} \ a \text{和} \ b \text{相 除}}} \\ = & {\underbrace{(a \div b) \times (a \div b) \times (a \div b) \times (a \div b) \times \cdots \times (a \div b)}_{m \text{個} \ a \div \ b }} \\ = & (a \div b)^m \end{align} </math> === (<sup>b</sup>⁄<sub>a</sub>)<sup>m</sup> = <sup>b<sup>m</sup></sup>⁄<sub>a<sup>m</sup></sub> === <math> \begin{align} & (\frac{a}{b})^m \\ = & (a \div b)^m \\ = & {a^m} \div {b^m} \\ = & \frac{a^m}{b^m} \end{align} </math> === a<sup>-x</sup> = <sup>1</sup>⁄<sub>a<sup>x</sup></sub>=== <math> \begin{align} & a^{-x} \\ = & (a^{-1})^x \\ = & (a^{m-n})^x \quad (m-n=-1) \\ = & (a^m - a^n)^x \\ = & \bigg(\frac{\overbrace{a \times a \times \cdots \times a}^{m \text{個} \ a}}{\underbrace{a \times a \times a \times \cdots \times a}_{n \text{個} \ a}}\bigg)^x \\ = & \frac{(\overbrace{a \times a \times \cdots \times a}^{m \text{個} \ a})^x}{(\underbrace{a \times a \times a \times \cdots \times a}_{n \text{個} \ a})^x} \\ = & \frac{\overbrace{{a^x} \times {a^x} \times \cdots \times {a^x}}^{m \text{個} \ {a^x}}}{\underbrace{{a^x} \times {a^x} \times {a^x} \times \cdots \times {a^x}}_{n \text{個} \ {a^x}}} \\ = & \frac{\overbrace{\not{a^x} \times \not{a^x} \times \not{\cdots} \times \not{a^x}}^{m \text{個} \ a}}{\underbrace{\not{a^x} \times \not{a^x} \times \not{a^x} \times \not{\cdots} \times {a^x}}_{n \text{個} \ {a^x}}} \\ = & \frac{1}{\underbrace{a^x}_{n-m=1 \ \text{個} \ {a^x}}} \\ = & \frac{1}{a^x} \end{align} </math> ==習題== 1.<math>(10 \times {5^2}) \div (2 \times 5^{-3}) = ?</math><br> (A) 1 (B) 5<sup>4</sup> (C) 5<sup>5</sup> (D) 5<sup>6</sup> <br> 2.<math>(-4^4)^2 \div 2^{10}\div 8^2</math><br> (A) 1 (B) 2 (C) 4 (D) 8 ==習題解答及解析== 1.(D) 2.(A)<br> 1.<br> <math> \begin{align} & (10 \times {5^2}) \div (2 \times 5^{-3}) \\ = & 10 \times {5^2} \div 2 \div 5^{-3} \\ = & (10 \div 2) \times ({5^2} \div 5^{-3}) \\ = & 5 \times 5^{2-(-3)} \\ = & 5^1 \times 5^5 \\ = & 5^6 \end{align} </math><br> 2.<br> <math> \begin{align} & (-4^4)^2 \div 2^{10} \div 8^2 \\ = & 2^{16} \div 2^{10} \div 2^6 \\ = & 2^{(16-10-6)} \\ = & 2^0 \\ = & 1 \end{align} </math><br> [[Category:國中數學]]
该页面使用的模板:
Template:Header2
(
查看源代码
)
返回
國中數學/國中數學七年級/2-5 指數律
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息