查看“︁微积分学/积分表”︁的源代码
←
微积分学/积分表
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Calculus/Top Nav|导数表|}} == 运算法则 == * <math>\int c\cdot f(x)\mathrm{d}x=c\cdot\int f(x)\mathrm{d}x</math> * <math>\int\big(f(x)\pm g(x)\big)\mathrm{d}x=\int f(x)\mathrm{d}x\pm\int g(x)\mathrm{d}x</math> * <math>\int u\,dv=uv-\int v\,du</math> == 幂函数 == * <math>\int \mathrm{d}x=x+C</math> * <math>\int a\,\mathrm{d}x=ax+C</math> * <math>\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C\qquad(n\ne-1)</math> * <math>\int\frac{\mathrm{d}x}{x}=\ln|x|+C</math> * <math>\int\frac{\mathrm{d}x}{ax+b}=\frac{\ln|ax+b|}{a}+C\qquad(a\ne0)</math> == 三角函数 == === 基本三角函数 === * <math>\int\sin(x)\mathrm{d}x=-\cos(x)+C</math> * <math>\int\cos(x)\mathrm{d}x=\sin(x)+C</math> * <math>\int\tan(x)\mathrm{d}x=-\ln|\cos(x)|+C</math> * <math>\int\sin^2(x)\mathrm{d}x=\int\frac{1-\cos(2x)}{2}\mathrm{d}x=\frac{x}{2}-\frac{\sin(2x)}{4}+C</math> * <math>\int\cos^2(x)\mathrm{d}x=\int\frac{1+\cos(2x)}{2}\mathrm{d}x=\frac{x}{2}+\frac{\sin(2x)}{4}+C</math> * <math>\int\tan^2(x)\mathrm{d}x=\tan(x)-x+C</math> === 倒數三角函数 === * <math>\int\sec(x)\mathrm{d}x=\ln\Big|\sec(x)+\tan(x)\Big|+C=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C=2\mathrm{artanh}\left(\tan\left(\frac{x}{2}\right)\right)+C</math> * <math>\int\csc(x)\mathrm{d}x=-\ln\Big|\csc(x)+\cot(x)\Big|+C=\ln\left|\tan\left(\frac{x}{2}\right)\right|+C</math> * <math>\int\cot(x)\mathrm{d}x=\ln|\sin(x)|+C</math> * <math>\int\sec^2(ax)\mathrm{d}x=\frac{\tan(ax)}{a}+C</math> * <math>\int\csc^2(ax)\mathrm{d}x=-\frac{\cot(ax)}{a}+C</math> * <math>\int\cot^2(ax)\mathrm{d}x=-x-\frac{\cot(ax)}{a}+C</math> * <math>\int\sec(x)\tan(x)\mathrm{d}x=\sec(x)+C</math> * <math>\int\sec(x)\csc(x)\mathrm{d}x=\ln|\tan(x)|+C</math> === 降阶公式 === * <math>\int\sin^n(x)\mathrm{d}x=-\frac{\sin^{n-1}(x)\cos(x)}{n}+\frac{n-1}{n}\int\sin^{n-2}(x)\mathrm{d}x+C\qquad(n>0)</math> * <math>\int\cos^n(x)\mathrm{d}x=-\frac{\cos^{n-1}(x)\sin(x)}{n}+\frac{n-1}{n}\int\cos^{n-2}(x)\mathrm{d}x+C\qquad(n>0)</math> * <math>\int\tan^n(x)\mathrm{d}x=\frac{\tan^{n-1}(x)}{(n-1)}-\int\tan^{n-2}(x)\mathrm{d}x+C\qquad(n\ne1)</math> * <math>\int\sec^n(x)\mathrm{d}x=\frac{\sec^{n-1}(x)\sin(x)}{n-1}+\frac{n-2}{n-1}\int\sec^{n-2}(x)\mathrm{d}x+C\qquad(n\ne1)</math> * <math>\int\csc^n(x)\mathrm{d}x=-\frac{\csc^{n-1}(x)\cos(x)}{n-1}+\frac{n-2}{n-1}\int\csc^{n-2}(x)\mathrm{d}x+C\qquad(n\ne1)</math> * <math>\int\cot^n(x)\mathrm{d}x=-\frac{\cot^{n-1}(x)}{n-1}-\int\cot^{n-2}(x)\mathrm{d}x+C\qquad(n\ne1)</math> * <math>a^2\int x^n\sin(ax)\mathrm{d}x = nx^{n-1}\sin(ax)-ax^n\cos(ax)-n(n-1)\int x^{n-2}\sin(ax)\mathrm{d}x</math> * <math>a^2\int x^n\cos(ax)\mathrm{d}x = ax^n\sin(ax)+nx^{n-1}\cos(ax)-n(n-1)\int x^{n-2}\cos(ax)\mathrm{d}x</math> === 显形式 === * <math>\int \sin^n(x)\mathrm{d}x = -\cos(x)_2F_1\left(\frac{1}{2}, \frac{1-n}{2}; \frac{3}{2}; \cos^2(x)\right) + C</math> * <math>\int \cos^n(x)\mathrm{d}x = -\frac{1}{n+1}\mathrm{sgn}(\sin(x))\cos^{n+1}(x)_2F_1\left(\frac{1}{2}, \frac{n+1}{2}; \frac{n+3}{2}; \cos^2(x)\right) + C\qquad(n\ne-1)</math> * <math>\int \tan^n(x)\mathrm{d}x = \frac{1}{n+1}\tan^{n+1}(x)_2F_1\left(1, \frac{n+1}{2}; \frac{n+3}{2}; -\tan^2(x)\right) + C\qquad(n\ne-1)</math> * <math>\int \csc^n(x)\mathrm{d}x = -\cos(x)_2F_1\left(\frac{1}{2}, \frac{n+1}{2}; \frac{3}{2}; \cos^2(x)\right) + C</math> * <math>\int \sec^n(x)\mathrm{d}x = \sin(x)_2F_1\left(\frac{1}{2}, \frac{n+1}{2}; \frac{3}{2}; \sin^2(x)\right) + C</math> * <math>\int \cot^n(x)\mathrm{d}x = -\frac{1}{n+1}\cot^{n+1}(x)_2F_1\left(1, \frac{n+1}{2}; \frac{n+3}{2}; -\cot^2(x)\right) + C\qquad(n\ne-1)</math> 其中<math>{}_2F_1</math>为[[W:超几何函数|超几何函数]], <math>\mathrm{sgn}</math>为[[W:符号函数|符号函数]]。 === 反三角函数 === * <math>\int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin(x)+C</math> * <math>\int\frac{\mathrm{d}x}{\sqrt{a^2-x^2}}=\arcsin\left(\tfrac{x}{a}\right)+C\qquad(a\ne0)</math> * <math>\int\frac{\mathrm{d}x}{1+x^2}=\arctan(x)+C</math> * <math>\int\frac{\mathrm{d}x}{a^2+x^2}=\frac{\arctan\left(\tfrac{x}{a}\right)}{a}+C\qquad(a\ne0)</math> == 指数和对数函数 == * <math>\int e^x\mathrm{d}x=e^x+C</math> * <math>\int e^{ax}\mathrm{d}x=\frac{e^{ax}}{a}+C\qquad(a\ne0)</math> * <math>\int a^x\mathrm{d}x=\frac{a^x}{\ln(a)}+C\qquad(a>0,a\ne1)</math> * <math>\int\ln(x)\mathrm{d}x=x\ln(x)-x+C</math> * <math>\int e^{x}\sin(x)\mathrm{d}x = \frac{e^{x}}{2}(\sin(x) - \cos(x)) + C</math> * <math>\int e^{x}\cos(x)\mathrm{d}x = \frac{e^{x}}{2}(\sin(x) + \cos(x)) + C</math> === 降阶公式 === * <math>\int x^ne^{ax}\mathrm{d}x = \frac{1}{a}x^ne^{ax} - \frac{n}{a}\int x^{n-1}e^{ax}\mathrm{d}x</math> == 反三角函数 == * <math>\int\arcsin(x)\mathrm{d}x=x\arcsin(x)+\sqrt{1-x^2}+C</math> * <math>\int\arccos(x)\mathrm{d}x=x\arccos(x)-\sqrt{1-x^2}+C</math> * <math>\int\arctan(x)\mathrm{d}x=x\arctan(x)-\frac{1}{2}\ln|1+x^2|+C</math> * <math>\int\arccsc(x)\mathrm{d}x=x\arccsc(x)+\ln\left|x + x\sqrt{1-\frac{1}{x^2}}\right| + C</math> * <math>\int\arcsec(x)\mathrm{d}x=x\arcsec(x)-\ln\left|x + x\sqrt{1-\frac{1}{x^2}}\right| + C</math> * <math>\int\arccot(x)\mathrm{d}x=x\arccot(x)+\frac{1}{2}\ln|1+x^2| + C</math> == 双曲函数 == === 基本双曲函数 === * <math>\int \sinh(x)\mathrm{d}x = -i\int \sin(ix) \mathrm{d}x = \cos(ix) + C = \cosh(x) + C</math> * <math>\int \cosh(x)\mathrm{d}x = \int \cos(ix) \mathrm{d}x = -i\sin(ix) + C = \sinh(x) + C</math> * <math>\int \tanh(x)\mathrm{d}x = -i\int \tan(ix) \mathrm{d}x = \ln\left|\cos(ix)\right| + C = \ln\left|\cosh(x)\right| + C</math> === 倒数双曲函数 === * <math>\int \mathrm{csch}(x)\mathrm{d}x = i\int \csc(ix) \mathrm{d}x = \log\left|-i\tan\left(\frac{ix}{2}\right)\right| + C = \log\left|\tanh\left(\frac{x}{2}\right)\right| + C</math> * <math>\int \mathrm{sech}(x)\mathrm{d}x = \int \sec(ix) \mathrm{d}x = 2\mathrm{artanh}\left(-i\tan\left(\frac{x}{2}i\right)\right) + C = 2\arctan\left(\tanh\left(\frac{x}{2}\right)\right) + C</math> * <math>\int \mathrm{coth}(x) \mathrm{d}x = i\int \cot(ix) \mathrm{d}x = \log\left|-i\sin(ix)\right| + C = \log\left|\sinh(x)\right| + C</math> === 反双曲函数 === * <math>\int \mathrm{arsinh}(x)\mathrm{d}x = x\mathrm{arsinh}(x) - \sqrt{x^2 + 1} + C</math> * <math>\int \mathrm{arcosh}(x)\mathrm{d}x = x\mathrm{arcosh}(x) - \sqrt{x^2 - 1} + C</math> * <math>\int \mathrm{artanh}(x)\mathrm{d}x = x\mathrm{artanh}(x) + \frac{1}{2}\ln(1-x^2) + C</math> * <math>\int \mathrm{arcsch}(x)\mathrm{d}x = x\mathrm{arcsch}(x) + |\mathrm{arsinh}(x)| + C</math> * <math>\int \mathrm{arsech}(x)\mathrm{d}x = x\mathrm{arsech}(x) + \arcsin(x) + C</math> * <math>\int \mathrm{artanh}(x)\mathrm{d}x = x\mathrm{arcoth}(x) + \frac{1}{2}\ln(x^2 - 1) + C</math> == 杂项 == * <math>\int |f(x)|\mathrm{d}x = \mathrm{sgn}(f(x))\int f(x)\mathrm{d}x</math>,其中<math>\mathrm{sgn}</math>为[[W:符号函数|符号函数]]。 == 定积分 == * <math>\int_{[0,1]^n} \frac{\prod_{i=1}^n\mathrm{d}x_i}{1-\prod_{i=1}^n x_i} = \zeta(n)</math>,其中整数<math>n > 1</math>,<math>\zeta</math>为[[W:黎曼ζ函數|黎曼ζ函數]]。 * <math>\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}</math> * <math>\int_0^1 t^{u-1}(1-t)^{v-1}\mathrm{d}t = \beta(u,v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}</math>,其中<math>\Gamma</math>为[[W:Γ函数|Γ函数]]。 * <math>\int_0^\infty t^{s-1}e^{-t}\mathrm{d}t = \Gamma(s)</math> * <math>\int_0^{2\pi} e^{u\cos\theta}\mathrm{d}\theta = 2\pi I_0(u)</math>,其中<math>I_0</math>为[[W:贝塞尔函数#%E4%BF%AE%E6%AD%A3%E8%B4%9D%E5%A1%9E%E5%B0%94%E5%87%BD%E6%95%B0|第一类修正贝塞尔函数]]。 * <math>\int_0^\infty \frac{\sin(x)}{x} \mathrm{d}x = \frac{\pi}{2}</math> {{Calculus/Top Nav|导数表|}} {{Calculus/TOC}}
该页面使用的模板:
Template:Calculus/TOC
(
查看源代码
)
Template:Calculus/Top Nav
(
查看源代码
)
返回
微积分学/积分表
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息