Template:Wikipedia
1.∫x3+4x+3x4+5x2+4dx=∫x3+4x+3(x2+1)(x2+4)dx=∫Ax+Bx2+1+Cx+Dx2+4dxx3+4x+3(x2+1)(x2+4)=Ax+Bx2+1+Cx+Dx2+4x3+4x+3(x2+4)=Ax+B+Cx+Dx2+4(x2+1)x=i−i+4i+33=i+1=Ai+BA=1B=1x4+4x2+3xx4+5x2+4=x2+xx2+1+Cx2+Dxx2+4x→∞1=1+CC=0x=034=1+D4D=−1∫x3+4x+3(x2+1)(x2+4)dx=∫x+1x2+1+−1x2+4dx=∫xx2+1dx+∫1x2+1dx+∫−1x2+4dx=ln(x2+1)2+tan−1x−12tan−1x22.∫1x+xxdx=2∫1x+xdx=2∫(Ax+Bx+1)dxA=1B=−1=2∫(1x+−1x+1)dx=2(∫1xdx−∫1x+1dx)=2(lnx−ln(x+1))=2lnxx+1