組合數求和中由p(k)=∑j=0mCjk−aΔjp(a)得到多項式的求和結果。[1]
Template:Robox 設p(k)=∑j=0majCjk−a=a0+a1C1k−a+a2C2k−a+…+amCmk−a
p(a)=a0
ΔClk=Clk+1−Clk=Cl−1k
Δjp(k)=aj+aj+1C1k−a+aj+2C2k−a+…+amCm−jk−a
Δjp(a)=aj
p(k)=∑j=0mCjk−aΔjp(a)
Template:Robox/Close
除此之外,還可以利用變換∑k=0∞ukvkxk=∑k=0∞Δku0xkk!dkdxk(∑l=0∞vlxl)求和,可設uk=p(k)為多項式使和式的項數有限。(Δm+1uk=0)[2]
Template:Robox
dkdxk(∑l=0∞vlxl)=∑l=k∞l(l−1)…(l−k+1)vlxl−k=∑l=k∞l!(l−k)!vlxl−k
∑k=0∞Δku0xkk!dkdxk(∑l=0∞vlxl)=∑k=0∞∑l=k∞CklΔku0vlxl=∑l=0∞∑k=0lCklΔku0vlxl=∑l=0∞vlxl(∑k=0lCklΔku0)=∑l=0∞ulvlxl=∑k=0∞ukvkxk
Template:ExampleRobox
vk=1,dkdxk(∑l=0∞vlxl)=dkdxk(∑l=0∞xl)=dkdxk(11−x)=k!(1−x)k+1
∑k=0∞ukxk=∑k=0∞Δku0xkk!dkdxk(∑l=0∞vlxl)=∑k=0∞Δku0xk(1−x)k+1
vk=1k!,dkdxk(∑l=0∞vlxl)=dkdxk(∑l=0∞xll!)=dkdxkex=ex
∑k=0∞ukxkk!=∑k=0∞Δku0xkk!ex=ex(∑k=0∞Δku0xkk!) Template:Robox/Close
Template:Reflist