查看“︁學院物理/電位”︁的源代码
←
學院物理/電位
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{wikipedia|電位}} ==定義== <math>\begin{align}U_r=\frac{kqQ}r\qquad V_r=\frac{U_r}q=\frac{kQ}r\qquad V_p=k\int\frac{dq}r\qquad\Delta V=-\int_1^2\vec Ed\vec S\\\vec E=\frac{-\partial V}{\partial x}\hat i\end{align}</math> ==性質== {{see also|學院物理/連續電荷分布與高斯定律#六{{!}}圖23.4}} <span style=display:inline-block;width:30px></span>[[w:絕緣體|絕緣體]][[w:球面#包围的体积|球]]<span style=display:inline-block;width:40px></span>[[w:導體|導體]]球 <div style="position:relative;width:200px;"><b><i> <div style="border:solid;border-width:0 0 4px 4px;height:80px;margin-left:14px;width:80px;"></div> <div style="border:solid;border-width:0 0 4px 4px;height:80px;left:110px;position:absolute;top:0;width:80px;"></div> <div style="height:20px;margin-left:80px">r</div> <div style="border:solid;border-width:0 0 4px 4px;height:80px;margin-left:14px;width:80px;"></div> <div style="border:solid;border-width:0 0 4px 4px;height:80px;left:110px;position:absolute;top:104px;width:80px;"></div> <div style="border:dashed;border-width:0 1px 0 1px;height:190px;left:50px;position:absolute;top:0;width:95px;"></div> <div style="left:0;position:absolute;top:4px">E</div> <div style="left:0;position:absolute;top:106px">V</div> <div style="margin-left:44px"><math>a\qquad\qquad\quad\;a</math></div> <div style="border:solid;border-width: 2px 0 0;height:40px;left:25px;position:absolute;top:52px;transform:rotate(-50deg);width:50px;"></div> <div style="border:solid;border-width: 2px 0 0;height:40px;left:112px;position:absolute;top:144px;width:36px;"></div> <div style="border:solid 2px;border-radius:40px;border-color:transparent;border-bottom-color:initial;height:78px;left:50px;position:absolute;top:0;transform:rotate(45deg);width:78px;"></div> <div style="border:solid 2px;border-radius:40px;border-color:transparent;border-bottom-color:initial;height:78px;left:146px;position:absolute;top:0;transform:rotate(45deg);width:78px;"></div> <div style="border:solid 2px;border-radius:40px;border-color:transparent;border-bottom-color:initial;height:78px;left:146px;position:absolute;top:104px;transform:rotate(45deg);width:78px;"></div> <div style="border:solid 2px;border-radius:40px;border-color:transparent;border-bottom-color:initial;height:78px;left:50px;position:absolute;top:104px;transform:rotate(45deg);width:78px;"></div> <div style="border:solid 2px;border-radius:40px;border-color:transparent;border-top-color:initial;height:70px;left:-22px;position:absolute;top: 110px;transform:rotate(45deg);width: 70px;"></div> <div style="left:20px;position:absolute;top:20px"><math>\propto r\,\propto\frac1{r^2}\qquad\quad\,\propto\frac1{r^2}</math></div> <div style="left:48px;position:absolute;top:110px"><math>\begin{align}&\begin{smallmatrix}\propto3a^2-\end{smallmatrix}r^2\\&\propto\frac1 r\qquad\quad\;\,\propto\frac1 r\end{align}</math></div> </i></b></div> ===絕緣體球=== :<math>\begin{align}V(r<a)&=\frac{kQ}{2a}\left(3-\frac{r^2}{a^2}\right)=\frac{kQ}{2a^3}\left(3a^2-r^2\right)\\V(r>a)&=\frac{kQ}r\end{align}</math> ===導體球=== :<math>\begin{align}V(r<a)=\frac{kQ}a\\V(r>a)=\frac{kQ}r\end{align}</math> ==例題== ===五=== <div style=float:right>{{see also|學院物理/連續電荷分布與高斯定律#二{{!}}圖23.3}}圖24.14</div> <math>\begin{align}V=k\int\frac{dq}r=\frac{kQ}\sqrt{x^2+a^2}\\E_x=\frac{-dV}{dx}=\frac{kxQ}{\sqrt{x^2+a^2}^3}\end{align}</math> ===六=== <div style=float:right>{{see also|學院物理/連續電荷分布與高斯定律#三{{!}}圖23.4}}圖24.15</div> <math>\begin{align}V=\int dV=\int\frac{kdq}\sqrt{x^2+r^2}=\int\frac{k2\pi\sigma rdr}\sqrt{x^2+r^2}=k2\pi\sigma\int_0^R\frac{rdr}\sqrt{x^2+r^2}\\=k2\pi\sigma\int_0^R\frac 1{2r}r\left(x^2+r^2\right)^{\frac{-1}2}d\left(x^2+r^2\right)=k\pi\sigma2\left[(x^2+r^2)^{\frac1 2}\right]_0^R\\=2k\pi\sigma(\sqrt{x^2+R^2}-x)\\E_x=\frac{-dV}{dx}=-2k\pi\sigma\frac{d\left[(x^2+R^2)^{\frac1 2}-x\right]}{dx}=-2k\pi\sigma\left(\frac{2x}2\frac1\sqrt{x^2+R^2}-1\right)\\=2k\pi\sigma\left(1-\frac x\sqrt{x^2+R^2}\right)\end{align}</math> ===七=== <div style=float:right> <div style=position:relative;height:100px;width:160px> <div style="border:solid;border-width:0 0 6px 2px;height:66px;left:22px;position:absolute;top:0;width:108px;"></div> <div style=left:0;position:absolute;top:0><math>\begin{array}{l}P\,\bullet\nwarrow\qquad\\\quad\;\,a\quad\;r\\\quad\;\gets x\to\searrow \dashv dx\vdash\\\quad\;\longleftarrow\quad l\quad\longrightarrow\end{array}</math></div> </div> 圖24.16</div> {{see also|微积分学/不定积分/三角代換法{{!}}三角代換法|學院物理/連續電荷分布與高斯定律#一{{!}}例題23.1}} <math>\begin{align}V_p=k\int\frac{dq}r=k\int_0^l\frac{\lambda dx}\sqrt{x^2+a^2}=k\lambda\int_0^l\frac{dx}\sqrt{x^2+a^2}\\\because\int\frac{dx}\sqrt{x^2+a^2}=\ln\left(\frac{x+\sqrt{x^2+a^2}}a\right)+\text{C}\\\therefore V_p=k\lambda\left[\ln\left(\frac{x+\sqrt{x^2+a^2}}a\right)\right]_0^l\\=k\lambda\left[\ln\left(\frac{l+\sqrt{l^2+a^2}}a\right)-\ln\frac\sqrt{a^2}a\right]\\=k\lambda\ln\left(\frac{l+\sqrt{l^2+a^2}}a\right)\end{align}</math> ==靜電平衡== 導體的靜電平衡有以下性質: #導體內的電場為零 #導體的電荷在表面 #導體外的電場為<math>\sigma/\epsilon</math> #導體的電荷分布在曲率半徑越大時密度越大 ==練習== <div style=padding:40px;position:relative><b><i> <div style="border:4px solid;border-bottom-color:transparent;border-radius:50%;border-right-color:transparent;height:100px;width:100px;"></div> <div style="border:4px solid;border-bottom-color:transparent;border-right-color:transparent;border-radius:50%;height:100px;left:40px;position:absolute;top:40px;transform:rotate(-20deg);width:100px;"></div> <div style="border:2px dashed;border-radius:50%;height:102px;left:41px;position:absolute;top:41px;width:102px;"></div> <div style="border:1px solid transparent;border-radius:50%;border-right-color:initial;height:40px;left:73px;position:absolute;top:73px;transform:rotate(-45deg);width:40px;"></div> <div style="border:1px solid;border-bottom-color:transparent;border-radius:50%;border-right-color:transparent;height:40px;left:73px;position:absolute;top:73px;transform:rotate(-20deg);width:40px;"></div> <div style="border:solid;border-width:0 0 1px;left:94px;position:absolute;top:94px;transform:rotate(-45deg);transform-origin:left;width:50px;"></div> <div style="border:solid;border-width:0 0 1px;left:44px;position:absolute;top:94px;transform:rotate(-65deg);transform-origin:right;width:50px;"></div> <div style="border:solid;border-width:0 0 1px;left:0;position:absolute;top:94px;width:200px;"></div> <div style="border:solid;border-width:0 1px 0 0;height:200px;left:94px;position:absolute;top:0;"></div> <div style=left:190px;position:absolute;top:90px>x</div> <div style=left:80px;position:absolute;top:0>y</div> <div style=left:120px;position:absolute;top:70px><math>\theta_1</math></div> <div style=left:60px;position:absolute;top:60px><math>\theta_2</math></div> <div style=left:84px;position:absolute;top:114px>r</div> <div style=left:96px;position:absolute;top:92px>O</div> </b></i></div> <math> \begin{align}& \lambda=a\sin\theta \\& dE=\frac{kdq}{r^2} \\& dq=\lambda ds=a\sin\theta rd\theta \\& dE_x=dE\cos\theta=\frac{kdq\cos\theta}{r^2}=\frac{ka\sin\theta\cos\theta d\theta}r \\& dE_y=dE\sin\theta=\frac{kdq\sin\theta}{r^2}=\frac{ka\sin^2\theta d\theta}r \\& E_x=\frac{ka}r\int_{\theta_1}^{\theta_2}\sin\theta\cos\theta d\theta=\frac{ka}{4r}\int_{\theta_1}^{\theta_2}\sin2\theta d2\theta \\& =\frac{-ka}{4r}(\cos2\theta_2-\cos2\theta_1) \\& E_y=\frac{ka}r\int_{\theta_1}^{\theta_2}\sin^2\theta d\theta=\frac{ka}{4r}\int_{\theta_1}^{\theta_2}\left(1-\cos2\theta\right)d2\theta \\& =\frac{ka}{4r}\bigg[2\theta-\sin2\theta\bigg]_{\theta_1}^{\theta_2}=\frac{ka}{4r}\left(2\theta_2-2\theta_1-\sin2\theta_2+\sin2\theta_1\right) \\& \vec E=E_x\hat i-E_y\hat j \\& =\frac{-ka}{4r}\left(\cos2\theta_2-\cos2\theta_1\right)\hat i-\frac{ka}{4r}\left(2\theta_2-2\theta_1-\sin2\theta_2+\sin2\theta_1\right)\hat j \\& V_x=-\int E_xdS=-\int E_xrd\theta \\& =\frac{ka}8\int_{\theta_2}^{\theta_1}\cos2\theta d2\theta =\frac{ka}8\bigg[\sin2\theta\bigg]_{\theta_2}^{\theta_1} \\& =\frac{ka}8\left(\sin2\theta_2-\sin2\theta_1\right) \\& V_y=-\int E_ydS=-\int E_yrd\theta \\& =\frac{-ka}{4r}\int_{\theta_1}{\theta_2}2\theta-\sin2\theta d\theta \\& =\frac{-ka}{4r}\bigg[\theta^2+\frac{\cos2\theta}2\bigg]_{\theta_1}^{\theta_2} \end{align} </math>
该页面使用的模板:
Template:See also
(
查看源代码
)
Template:Wikipedia
(
查看源代码
)
返回
學院物理/電位
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息