學院物理/電位

来自testwiki
跳转到导航 跳转到搜索

Template:Wikipedia

定義

Ur=kqQrVr=Urq=kQrVp=kdqrΔV=12EdSE=Vxi^

性質

Template:See also 絕緣體導體

r
E
V
aa
r1r21r2
3a2r21r1r

絕緣體球

V(r<a)=kQ2a(3r2a2)=kQ2a3(3a2r2)V(r>a)=kQr

導體球

V(r<a)=kQaV(r>a)=kQr

例題

Template:See also圖24.14

V=kdqr=kQx2+a2Ex=dVdx=kxQx2+a23

Template:See also圖24.15

V=dV=kdqx2+r2=k2πσrdrx2+r2=k2πσ0Rrdrx2+r2=k2πσ0R12rr(x2+r2)12d(x2+r2)=kπσ2[(x2+r2)12]0R=2kπσ(x2+R2x)Ex=dVdx=2kπσd[(x2+R2)12x]dx=2kπσ(2x21x2+R21)=2kπσ(1xx2+R2)

Parxdxl
圖24.16

Template:See also Vp=kdqr=k0lλdxx2+a2=kλ0ldxx2+a2dxx2+a2=ln(x+x2+a2a)+CVp=kλ[ln(x+x2+a2a)]0l=kλ[ln(l+l2+a2a)lna2a]=kλln(l+l2+a2a)

靜電平衡

導體的靜電平衡有以下性質:

  1. 導體內的電場為零
  2. 導體的電荷在表面
  3. 導體外的電場為σ/ϵ
  4. 導體的電荷分布在曲率半徑越大時密度越大

練習

x
y
θ1
θ2
r
O

λ=asinθdE=kdqr2dq=λds=asinθrdθdEx=dEcosθ=kdqcosθr2=kasinθcosθdθrdEy=dEsinθ=kdqsinθr2=kasin2θdθrEx=karθ1θ2sinθcosθdθ=ka4rθ1θ2sin2θd2θ=ka4r(cos2θ2cos2θ1)Ey=karθ1θ2sin2θdθ=ka4rθ1θ2(1cos2θ)d2θ=ka4r[2θsin2θ]θ1θ2=ka4r(2θ22θ1sin2θ2+sin2θ1)E=Exi^Eyj^=ka4r(cos2θ2cos2θ1)i^ka4r(2θ22θ1sin2θ2+sin2θ1)j^Vx=ExdS=Exrdθ=ka8θ2θ1cos2θd2θ=ka8[sin2θ]θ2θ1=ka8(sin2θ2sin2θ1)Vy=EydS=Eyrdθ=ka4rθ1θ22θsin2θdθ=ka4r[θ2+cos2θ2]θ1θ2