微积分学/极限/解答

来自testwiki
跳转到导航 跳转到搜索

基础题

  1. limx2(4x23x+1)
    解答:4(4)2(3)+1=166+1=𝟏𝟏
  2. limx5x2
    解答:52=𝟐𝟓

单侧极限

  1. limx0x3+x2x3+2x2
    解答:分解因式:x2x2x+1x+2,可知x=0为一可去间断点,故极限为12
  2. limx7(|x2+x|x)
    解答:|72+7|7=𝟒𝟗
  3. limx1+1x2
    解答:1x2x2<1时有意义,故极限为112=𝟎
  4. limx11x2
    解答:1x2x2>1时无意义,故极限不存在

双侧极限

  1. limx11x1
    解答:12
  2. limx41x4
    解答:limx41x4=
    limx4+1x4=+
    极限不存在
  3. limx21x2
    解答:limx21x2=
    limx2+1x2=+
    极限不存在
  4. limx3x29x+3
    解答:limx3(x+3)(x3)x+3=limx3x3=33=𝟔
  5. limx3x29x3
    解答:limx3(x3)(x+3)x3=limx3x+3=3+3=𝟔
  6. limx1x2+2x+1x+1
    解答:limx1(x+1)(x+1)x+1=limx1x+1=1+1=𝟎
  7. limx1x3+1x+1
    解答:limx1(x2x+1)(x+1)x+1=limx1x2x+1=(1)2(1)+1=1+1+1=𝟑
  8. limx4x2+5x36x216
    解答:limx4(x4)(x+9)(x4)(x+4)=limx4x+9x+4=4+94+4=138
  9. limx25x25x5
    解答:limx25(x5)(x+5)x5=limx25(x+5)=25+5=5+5=𝟏𝟎
  10. limx0|x|x
    解答:limx0|x|x=limx0xx=limx01=1
    limx0+|x|x=limx0+xx=limx0+1=1
    极限不存在
  11. limx21(x2)2
    解答:当x趋近于2时,分母趋近于0,故极限为+
  12. limx3x2+16x3
    解答:当x趋近于3时,分子趋近于5,分母趋近于0,但从左侧趋近时极限为,从右侧趋近时极限为+,故极限不存在
  13. limx23x28x32x218
    解答:3(2)28(2)32(2)218=3(4)+1632(4)18=12+163818=2510=52
  14. limx2x2+2x+1x22x+1
    解答:22+2(2)+1222(2)+1=4+4+144+1=91=𝟗
  15. limx3x+3x29
    解答:limx3x+3(x+3)(x3)=limx31x3
    limx31x3=
    limx3+1x3=+
    极限不存在
  16. limx1x+1x2+x
    解答:limx1x+1x(x+1)=limx11x=11=𝟏
  17. limx11x2+1
    解答:112+1=11+1=12
  18. limx1x3+5x12x
    解答:13+5(1)121=1+511=61=𝟓
  19. limx1x21x2+2x3
    解答:limx1(x1)(x+1)(x1)(x+3)=limx1x+1x+3=1+11+3=24=12
  20. limx15xx2+2x3
    解答:当x趋近于1时,分子趋近于5,分母趋近于0,但从左侧趋近时极限为,从右侧趋近时极限为+,故极限不存在

无穷极限

  1. limxx+πx2+3x+2
    解答:分母比分子高阶,故极限为𝟎
  2. limxx2+2x+13x2+1
    解答:分子与分母同阶,故极限为最高次项系数之比,即13
  3. limx3x2+x2x215
    解答:分子与分母同阶,故极限为最高次项系数之比,即32
  4. limx3x22x+1
    解答:极限为+
  5. limx2x232x364
    解答:分母比分子高阶,故极限为𝟎
  6. limx6
    解答:极限为𝟔
  7. limx3x2+4xx4+2
    解答:分母比分子高阶,故极限为𝟎
  8. limx2x+3x2+12x2+3
    解答:分子与分母同阶,故极限为最高次项系数之比,即32
  9. limxx33x2+13x2+x+5
    解答:分子比分母高阶,故极限为
  10. limxx2+2x32
    解答:分母比分子高阶,故极限为𝟎

分段函数极限

  1. f(x)={(x2)2x<2x3x2.
    1. limx2f(x)
      解答:(22)2=𝟎
    2. limx2+f(x)
      解答:23=𝟏
    3. limx2f(x)
      解答:左右两侧极限不相等,故极限不存在
  2. g(x)={2x+1x0x+10<x<4x2+2x4.
    1. limx4+g(x)
      解答:42+2=16+2=𝟏𝟖
    2. limx4g(x)
      解答:4+1=𝟓
    3. limx0+g(x)
      解答:0+1=𝟏
    4. limx0g(x)
      解答:2(0)+1=𝟏
    5. limx0g(x)
      解答:左右两侧极限相等,故极限为𝟏
    6. limx1g(x)
      解答:1+1=𝟐
  3. h(x)={2x3x<28x=2x+3x>2.
    1. limx0h(x)
      解答:2(0)3=𝟑
    2. limx2h(x)
      解答:2(2)3=43=𝟏
    3. limx2+h(x)
      解答:(2)+3=𝟏
    4. limx2h(x)
      解答:左右两侧极限相等,故极限为𝟏

Template:Calculus/TOC